Difference between revisions of "NVGate Octave Analyzer"

Jump to navigation Jump to search
Line 441: Line 441:


===CPB filters===
===CPB filters===
Defines the frequency range and the resolution.
*'''Autobandwidth''': manages the analysis and recording bandwidths automatically. The Inputs selection window allows the use of 2 different sampling rates for the dynamic inputs. It gathers inputs with the same physical quantity into groups, maintaining the same sampling into each group. When inputs are associated with the analysis plug-in, it adjusts its analysis bandwidth to match the inputs ones. Mixing input bandwidths in one analysis plug-in lead to set its bandwidth to the lowest one. Autobandwidth is set by default . When it is enabled in the plug-in, these settings "switch to informative status"
*'''Autobandwidth''': manages the analysis and recording bandwidths automatically. The Inputs selection window allows the use of 2 different sampling rates for the dynamic inputs. It gathers inputs with the same physical quantity into groups, maintaining the same sampling into each group. When inputs are associated with the analysis plug-in, it adjusts its analysis bandwidth to match the inputs ones. Mixing input bandwidths in one analysis plug-in lead to set its bandwidth to the lowest one. Autobandwidth is set by default . When it is enabled in the plug-in, these settings "switch to informative status"


* '''Lower central freq''': the central frequency of the lower band of the frequency range. The bands considered are octave bands (for the octave mode) and 1/3 octave bands (for the other modes).
* '''Lower central freq'''[[Image:Reports_Tools_Ribbons_405.png]]: the central frequency of the lower band of the frequency range. The bands considered are octave bands (for the octave mode) and 1/3 octave bands (for the other modes).
The user enters a value, which is adjusted to the closest central frequency. The bandwidth between the Lower and Upper central frequencies must be lower than or equal to eleven filters (considering octave bands) and 31 filters (considering 1/3 octave bands). So, if this bandwidth increases, then the Upper central frequency is automatically reduced.
The user enters a value, which is adjusted to the closest central frequency. The bandwidth between the Lower and Upper central frequencies must be lower than or equal to eleven filters (considering octave bands) and 31 filters (considering 1/3 octave bands). So, if this bandwidth increases, then the Upper central frequency is automatically reduced.


* '''Upper central freq''': the central frequency of the upper band of the frequency range. The bands considered are octave bands (for the octave mode) and 1/3 octave bands (for the other modes).
* '''Upper central freq'''[[Image:Reports_Tools_Ribbons_404.png]]: the central frequency of the upper band of the frequency range. The bands considered are octave bands (for the octave mode) and 1/3 octave bands (for the other modes).
The user enters a value, which is adjusted to the closest central frequency. The bandwidth between Lower and Upper central frequency must be lower than or equal to eleven filters (considering octave bands) and 31 filters (considering 1/3 octave bands). So, if this bandwidth increases, then the Lower central frequency is automatically increased.
The user enters a value, which is adjusted to the closest central frequency. The bandwidth between Lower and Upper central frequency must be lower than or equal to eleven filters (considering octave bands) and 31 filters (considering 1/3 octave bands). So, if this bandwidth increases, then the Lower central frequency is automatically increased.


Navigation menu